RESPONSIBILITY ASSESSMENT STANDARDS FOR CONDITIONAL AUTOMATION/DUAL CONTROL VEHICLES

Tom Karol
General Counsel – Federal
National Association Of Mutual Insurance Companies
NAMIC membership includes more than 1,400 member companies. The association supports regional and local mutual insurance companies on main streets across America and many of the country’s largest national insurers. NAMIC member companies write $268 billion in annual premiums. Our members account for 59 percent of homeowners, 46 percent of automobile, and 29 percent of the business insurance markets.

TOM KAROL
Tom Karol serves as General Counsel – Federal in NAMIC’s Washington, D.C., office. Tom represents NAMIC on issues impacting property/casualty insurance companies and has primary management of NAMIC’s response to federal legislation and regulation. Tom has extensive legal, regulatory, and operations experience with major financial services companies, law firms, regulatory agencies, and Congress, having served as legal counsel in federal agencies and with the U.S. Senate Committee on Governmental Affairs.

Acknowledged as a leader in the insurance industry on autonomous vehicles, Tom is on the Board of Directors of both the Highway Loss Data Institute and Advocates for Highway Safety and Auto Safety, and is an Observer on the Uniform Law Commission Committee on Highly Automated Vehicles. Tom has worked directly with National Highway Transportation Safety Administration officials and has provided testimony to Congressional committees on automated driving systems. Tom leads NAMIC’s Autonomous Vehicles Council and has been a featured speaker at insurance, actuary and legal conferences. He served on NHTSA panels relating to state jurisdiction and pre-market approval, has worked with the Insurance Institute for Highway Safety supporting the Virginia Tech Transportation Institute as part of the National Cooperative Highway Research Program, and is a stakeholder in the NHTSA Federal Motor Vehicle Safety Standards Considerations for Automated Driving Systems peer review.

For more information about NAMIC Issue Analyses, please visit namic.org/issues/our-positions or contact:

TOM KAROL
tkarol@namic.org
Direct 202.580.6741

NAMIC membership includes more than 1,400 member companies. The association supports regional and local mutual insurance companies on main streets across America and many of the country’s largest national insurers. NAMIC member companies write $268 billion in annual premiums. Our members account for 59 percent of homeowners, 46 percent of automobile, and 29 percent of the business insurance markets.

For more information about NAMIC Issue Analyses, please visit namic.org/issues/our-positions or contact:

TOM KAROL
tkarol@namic.org
Direct 202.580.6741

NAMIC membership includes more than 1,400 member companies. The association supports regional and local mutual insurance companies on main streets across America and many of the country’s largest national insurers. NAMIC member companies write $268 billion in annual premiums. Our members account for 59 percent of homeowners, 46 percent of automobile, and 29 percent of the business insurance markets.
The Society of Automotive Engineers has created categories of automated driving levels that is widely accepted today. Today, and possibly for a long time to come, the full driving task – SAE Levels 4 and 5 – is too complex an activity to be operated on the public roads, which could greatly increase consumer confidence, provide more protection to developers, help guide regulators, and enable law enforcement and insurers to understand and mitigate crashes.

Many ADS developers are actively engaged today in developing vehicles in which some of the dynamic driving tasks of the vehicle – the real-time operational and tactical functions required to operate a vehicle – can only be controlled by the ADS of the vehicle. These conditional automation/dual control, or CADC, vehicles are complex and vary model to model, with continuous upgrades and modification being made in real time over the air. There is a serious lack of understanding of these CADC vehicles, which directly impedes consumer confidence, effective regulation, and the development of these vehicles.

NAMIC proposes the need for standards that define what the CADC vehicles can and cannot do before they are operated on the public roads, which could greatly increase consumer confidence, provide more protection to developers, help guide regulators, and enable law enforcement and insurers to understand and mitigate crashes.

A primary impediment to the development and deployment of autonomous vehicles is their mind-boggling complexity and risk, starting with an extremely large amount of computer coding necessary for these vehicles. There is a serious lack of understanding of these CADC vehicles, which directly impedes consumer confidence, effective regulation, and the development of these vehicles. For a car to truly reach Level 5, or the Petersen Automotive Museum’s definition of Level 5, it would have to pass the following three points:

1. The driver can’t come out of cars for many years, if not more than a decade. Adam Jonas, Morgan Stanley
2. “Level 5 will never happen globally. This will only be the case in very few cities.” Thomas Sedran, VW CEO
3. “The driver can’t come out of cars for many years, if not more than a decade.” Adam Jonas, Morgan Stanley

There are tremendous efforts underway to develop and deploy automated driving systems. An ADS is a complex computer and mechanical system that gathers information from the environment, filters and interprets that information; chooses driving operations; and initiates mechanical actions to perform those driving operations.

Many ADS developers are actively engaged today in developing vehicles in which some of the dynamic driving tasks of the vehicle – the real-time operational and tactical functions required to operate a vehicle – can only be controlled by the ADS of the vehicle. This NAMIC Issue Analysis is brought to you by the NAMIC Advocacy team.

HANDS ON

LEGAL

HUMAN DRIVER / NO SIDE TASKS ALLOWED

EYES ON

HANDS ON

EYES ON

HANDS ON

EYES OFF

HANDS OFF

EYES OFF

HANDS OFF

NO OCCUPANT CONTROL

THE ONLY STAGE IN WHICH “DRIVER” INSURANCE WILL NOT BE REQUIRED

HANDS OFF

NOT LEGAL YET

DRIVER/OPERATOR MAY BE A MACHINE/SYSTEM

EYES ON

HANDS OFF

EYES ON

HANDS OFF

EYES OFF

HANDS OFF

EYES OFF

HANDS OFF

NO OCCUPANT CONTROL

THE ONLY STAGE IN WHICH “DRIVER” INSURANCE WILL NOT BE REQUIRED

LEGAL

HUMAN DRIVER / NO SIDE TASKS ALLOWED

EYES ON

HANDS ON

EYES ON

HANDS ON

EYES OFF

HANDS OFF

EYES OFF

HANDS OFF

NO OCCUPANT CONTROL

THE ONLY STAGE IN WHICH “DRIVER” INSURANCE WILL NOT BE REQUIRED

Today, and possibly for a long time to come, the full driving task – SAE Levels 4 and 5 – is too complex an activity to be fully formalized as a sensing-acting robotics system that can be explicitly solved through model-based and learning-based approaches in order to achieve full unconstrained vehicle autonomy.1

RESPONSIBILITY ASSESSMENT STANDARDS FOR CONDITIONAL AUTOMATION/DUAL CONTROL VEHICLES

- “Ford had overestimated the arrival of autonomous vehicles. At best, we can expect a driverless vehicle that operates within a small, geographically restricted area of a city, like a bus crawling back and forth in a restricted lane at an airport. Anything more is out of the question.” Jim Hackett, Ford CEO
- The technology won’t be ubiquitous for decades and driverless vehicles will always have constraints. Self-driving cars will require driver assistance for many years to come. Can’t envision a day when the technology operates in all weather conditions and without some sort of “user interaction.” John Krafcik, Waymo CEO
- “Level 5 will never happen globally. This will only be the case in very few cities.” Thomas Sedran, VW CEO
- “The driver can’t come out of cars for many years, if not more than a decade.” Adam Jonas, Morgan Stanley

A primary impediment to the development and deployment of autonomous vehicles is their mind-boggling complexity and risk, starting with an extremely large amount of computer coding necessary for these vehicles. There is a serious lack of understanding of these CADC vehicles, which directly impedes consumer confidence, effective regulation, and the development of these vehicles.

Here is a table showing the lines of code for different systems:

<table>
<thead>
<tr>
<th>System</th>
<th>Lines of Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Shuttle</td>
<td>400,000</td>
</tr>
<tr>
<td>Curiosity Mars Rover</td>
<td>2,500,000</td>
</tr>
<tr>
<td>Boeing 787 Dreamliner</td>
<td>6,500,000</td>
</tr>
<tr>
<td>Linux 5.3 Kernel</td>
<td>25,000,000</td>
</tr>
<tr>
<td>Windows 10</td>
<td>55,000,000</td>
</tr>
<tr>
<td>Ford F-150 Pickup Truck</td>
<td>130,000,000</td>
</tr>
<tr>
<td>Road-Ready Autonomous Vehicle</td>
<td>300,000,000</td>
</tr>
</tbody>
</table>

Source: NASA, Forbes, Linux, Microsoft, Frost & Sullivan, and RDI Analysis

However, car companies – or original equipment manufacturers, as they are known – are building and offering cars today in which the dynamic driving tasks of the vehicle can be controlled at times by the vehicle and at times by the occupant. These conditional automation/dual-control cars can be as relatively simple as the widely used automatic braking, variations of which include:3

- While completely autonomous vehicles remain decades away, cars are being developed and sold today in which the driver and the systems in the car share driving tasks.
- These conditional automation/dual control, or CADC, vehicles are complex and vary model to model, with continuous upgrades and modification being made in real time over the air.
- There is a serious lack of understanding of these CADC vehicles, which directly impedes consumer confidence, effective regulation, and the development of these vehicles.
- NAMIC proposes the need for standards that define what the CADC vehicles can and cannot do before they are operated on the public roads, which could greatly increase consumer confidence, provide more protection to developers, help guide regulators, and enable law enforcement and insurers to understand and mitigate crashes.

While CADC vehicles are certainly a logical step in technological development, different OEMs will offer various features with diverse functionality operated under assorted conditions and limitations. This wide-ranging variety of CADC vehicles results in significant safety and liability risks.

In a CADC vehicle, a human occupant will be required under varying conditions to assume control under expected conditions, as to whether the system or the driver was in control of the vehicle leading up to the crash. The lack of understanding of CADC capabilities and limitations increases safety risks. It might not be immediately apparent as to whether the system or the driver was in control of the vehicle leading up to the crash.

The PROBLEM – NOT KNOWING WHAT CADCS DO/DON’T DO

Proponents of automated vehicle technology often cite the 2015 NHTSA Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey10 that found driver operations to be the critical reason for 94 percent of the crashes reviewed. Those driver operations were broadly classified into recognition errors, decision errors, performance errors, and non-performance errors. Recognition error, at 41 percent, was the most frequently assigned critical reason. Decision error accounted for about 33 percent of the crashes, and in about 11 percent of the crashes, the critical reason was performance error with other driver errors recorded as critical reasons for about 8 percent.

However, there are two certainties in which we can be confident. First, CADC vehicles will be involved in crashes; no system is 100 percent safe, and these vehicles have special risks. Second, there will be many questions after crashes of CADC vehicles as to whether the system or the driver was in control of the vehicle leading up to the crash.

Responsibility Assessment Standards for Conditional Automation/Dual Control Vehicles

The NHTSA’s Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey11 found that driver operations were the critical reason for 94 percent of the crashes reviewed. Those driver operations were broadly classified into recognition errors, decision errors, performance errors, and non-performance errors. Recognition error, at 41 percent, was the most frequently assigned critical reason. Decision error accounted for about 33 percent of the crashes, and in about 11 percent of the crashes, the critical reason was performance error with other driver errors recorded as critical reasons for about 8 percent.

However, there are two certainties in which we can be confident. First, CADC vehicles will be involved in crashes; no system is 100 percent safe, and these vehicles have special risks. Second, there will be many questions after crashes of CADC vehicles as to whether the system or the driver was in control of the vehicle leading up to the crash.

The lack of understanding of CADC capabilities and limitations increases safety risks. It might not be immediately apparent as to whether the system or the driver was in control of the vehicle leading up to the crash.

The PROBLEM – NOT KNOWING WHAT CADCS DO/DON’T DO

Proponents of automated vehicle technology often cite the 2015 NHTSA Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey10 that found driver operations to be the critical reason for 94 percent of the crashes reviewed. Those driver operations were broadly classified into recognition errors, decision errors, performance errors, and non-performance errors. Recognition error, at 41 percent, was the most frequently assigned critical reason. Decision error accounted for about 33 percent of the crashes, and in about 11 percent of the crashes, the critical reason was performance error with other driver errors recorded as critical reasons for about 8 percent.

However, there are two certainties in which we can be confident. First, CADC vehicles will be involved in crashes; no system is 100 percent safe, and these vehicles have special risks. Second, there will be many questions after crashes of CADC vehicles as to whether the system or the driver was in control of the vehicle leading up to the crash.

The lack of understanding of CADC capabilities and limitations increases safety risks. It might not be immediately apparent as to whether the system or the driver was in control of the vehicle leading up to the crash.

The PROBLEM – NOT KNOWING WHAT CADCS DO/DON’T DO

Proponents of automated vehicle technology often cite the 2015 NHTSA Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey10 that found driver operations to be the critical reason for 94 percent of the crashes reviewed. Those driver operations were broadly classified into recognition errors, decision errors, performance errors, and non-performance errors. Recognition error, at 41 percent, was the most frequently assigned critical reason. Decision error accounted for about 33 percent of the crashes, and in about 11 percent of the crashes, the critical reason was performance error with other driver errors recorded as critical reasons for about 8 percent.

However, there are two certainties in which we can be confident. First, CADC vehicles will be involved in crashes; no system is 100 percent safe, and these vehicles have special risks. Second, there will be many questions after crashes of CADC vehicles as to whether the system or the driver was in control of the vehicle leading up to the crash.
of a CADC, the operator may not even know when he/she should exercise control. “Poor system limitation comprehension appears to hinder the ability to detect system inactivity when the system encounters situations that it cannot handle, which emphasizes the need for more intuitive interface communication strategies about system functionality and when drivers need to intervene.”

DEFINING WHAT CADCS DO/DON’T DO

In order to fully understand a crash involving a CADC vehicle, it is important to understand the designed capabilities and limitations of the CADC vehicle and how and when driving operations were engaged or disengaged leading up to the crash. Combining what the CADC vehicle was designed to do with what the CADC vehicle actually did leading up to the crash will determine whether the human operator or the vehicle’s operating system was responsible for the crash.

According to Sunwalls, “As more manufacturers deploy driving automation systems on their vehicles, to improve system safety, it will be necessary to develop detailed information about how the active safety systems performed during, and how drivers responded to, a crash sequence. Manufacturers, regulators, and crash investigators all need specific data in the event of a system malfunction or crash.”

It is crucial for the insurance industry to consult with OEMs, tech companies, ride-sharing companies, law enforcement groups, legislators, and regulators to develop a broad outline set of questions that help define the answers needed. The following queries developed by NAMIC provide the backbone for a framework to provide such answers and are illustrated in Appendix I to this paper.

- Can a CADC vehicle control any driving operations (steering, braking, acceleration)?
- Were the vehicle driving operation controls engaged?
- Did the vehicle allow/require occupant control?
- Was the occupant required or notified to take control?
- Was the occupant made aware of all operational domains and constraints?
- Was it reasonable for the occupant to take control?
- Did the control that the operator assumed – or should have assumed – (steering, braking, acceleration) cause or contribute to the crash?

Each of these questions can be addressed in more detail by a series of data points requested and can be used to develop Responsibility Assessment Standards for CADC Vehicles. The purpose of a set of Responsibility Assessment Standards for CADC Vehicles is to enable drivers, OEMs, insurers, and law enforcement to better understand whether the ADS of the vehicle or the occupant was responsible for the crash.

RESPONSIBILITY ASSESSMENT STANDARDS FOR CONDITIONAL AUTOMATION/DUAL CONTROL VEHICLES

Defining the operational design functions of the vehicle will provide a flexible system that will allow for CADC developments that may be unforeseen. Understanding the operational design of the CADC will be most important since the CADC will evolve in ways that are almost impossible to predict today. Consider the Tesla Smart Summon feature. The California Department of Motor Vehicles has reportedly determined that the combination of Smart Summon and the car’s robot system doesn’t count as “autonomous technology” that requires a permit and safety features because the car is “under the control” of the person summoning his/her car via a smartphone. As developments in autonomous and CADC vehicles get more complex and novel, the underlying key will be to define how operational control of driving tasks are designed to be allocated, shared, excluded, and required.

Insurance Institute for Highway Safety research in 2019 indicates that consumers will likely look for information on the use of automated and assisted driving systems. While the owner’s manual was cited as the primary source of information on how to use the automated driving systems by more than half of respondents to an IIHS survey, these results show that respondents would consult a variety of sources, including the OEM website (60 percent) and consumer information websites (38 percent). Another 2019 study by researchers from the IIHS and the Massachusetts Institute of Technology’s AgeLab found that, for the most part, drivers use the technology as it was intended.

It is important to note that data points sought from OEMs in Responsibility Assessment Standards should be crafted with a keen consideration of the proprietary information that OEMs have and need to protect. The data sought should not probe into the mechanics or details of how functionality is achieved, but rather what the OEM has designed and built the CADC to perform and the limitations of that performance. The questions asked in this paper are designed to avoid approaching proprietary information or confidential business information.

One of the biggest impediments to the deployment of CADC vehicles is public wariness of automated vehicles. Based on recent studies, public confidence in “self-driving” cars is low. Providing more specific information about what each model of CADC vehicle is designed to do will enable consumers to better understand and accept their responsibilities in these vehicles.

Increasing confidence in CADC technology through access to more and better information of specific capabilities and limitations of a vehicle could enhance the safe operation of these vehicles and prepare consumers for higher levels of automation in the future. By providing clear guidance to operators of CADC vehicles and ensuring the understanding and acceptance by operators, an OEM can also better manage its risk and liabilities for crashes.

The lack of this same information has been an impediment to the further development and implementation for clear federal and state regulations for the deployment of CADC vehicles. By making this information widely available without government regulations, OEMs can provide regulators with the assurances they need but retain the flexibility to modify disclosures to address upgrades and revisions. False or misleading information will remain subject to existing civil and criminal sanctions.

NAMIC ISSUE ANALYSIS

This NAMIC Issue Analysis is brought to you by the NAMIC Advocacy team.

For more NAMIC Issue Analyses, please visit namic.org/issues/our-positions.
Along those same lines, having detailed and current information on specific CADC vehicle capabilities and limitations would be of benefit to law enforcement and traffic officials who will need to understand when human drivers are required to be focused on driving operations, as well as when investigating crashes involving CADC vehicles.

Operators of CADC vehicles will need insurance, and this information will enable insurers to better gauge relative risk levels of different CADC vehicles and determine coverage responsibility in crashes of CADC vehicles. Insurance for these vehicles today is limited and costly; as evidenced by Tesla’s need to create its own insurance company.19

NEXT STEPS

NAMIC has worked with various stakeholders to develop proposed Responsibility Assessment Standards for conditional automation or dual control vehicles for wider consideration and refinement that will serve as a platform for further development and adoption, as seen in Appendix I. The acceptance of a platform by all industries will promote the development and deployment of safer vehicles and ensure mutual accountability. Most likely, the standards will continue to evolve with the development of CADCs and more autonomous vehicles.

When standards are sufficiently refined to meet the needs of the public and relevant stakeholders, the next significant step would be the development of specific logistics in collecting, updating, and widely communicating the information relating to these standards. In general, NAMIC believes that the most workable system would be a voluntary platform in which OEMs use the standards to make information publicly available. This will afford the flexibility that will be needed as CADCs and more autonomous vehicles continue to develop. This will also allow OEMs to use the standards to explain their vehicles, rather than having to comport their vehicles to a rigid regulatory category.

Overall, the goal is to provide consumers access to information that would help them operate safer CADC vehicles. Greater disclosure of CADC capabilities and limitations can help OEMs protect themselves from liability for the improper or misuse of their products. This information will also allow legislators and regulators to better understand CADC and autonomous capabilities and limitations in considering relevant laws and regulations. A flexible and evolving system of information may even elevate the need for less flexible federal and state requirements. Armed with detailed information on a specific vehicle’s capabilities and limitations, traffic officers will be able to quickly appreciate when driver behavior is permitted and prohibited. When the inevitable crashes occur, law enforcement and insurers can better assess and address responsibility. Insurance companies can use this current information to provide more and better coverage for CADC vehicles, as well as understand and help mitigate risks from the inevitable crashes.

Entities that choose not to participate would subject themselves to a competitive market disadvantage. Entities that provide inadequate or bad information will be subject to prompt and wide public review, as well as existing civil and criminal liability. A flexible and evolving system of information may even elevate the need for less flexible federal and state requirements. Armed with detailed information on a specific vehicle’s capabilities and limitations, traffic officers will be able to quickly appreciate when driver behavior is permitted and prohibited. When the inevitable crashes occur, law enforcement and insurers can better assess and address responsibility. Insurance companies can use this current information to provide more and better coverage for CADC vehicles, as well as understand and help mitigate risks from the inevitable crashes.

Like CADCs and autonomous vehicles, standards will evolve. With the cooperation of numerous stakeholders, standards such as those proposed in Appendix I can develop for wider consideration to promote the development and deployment of safer vehicles.

2) Which dynamic driving tasks – the real-time operational and tactical functions required to operate a vehicle in traffic – is the vehicle’s ADS designed to control?
 a) Lateral vehicle motion control via steering (operational)
 b) Longitudinal vehicle motion control via acceleration and deceleration (operational)
 c) Monitoring the driving environment via object and event detection, recognition, classification, and response preparation (operational and tactical)
 d) Object and event response execution (operational and tactical)
 e) Maneuver planning (tactical)
 f) Enhancing conspicuity via lighting, signaling, gesturing, etc. (tactical)
 g) Other ______________________________

3) What are the operational design domains of the vehicle – i.e. the specific conditions under which the ADS of vehicle is designed to control driving operations?
 a) Environmental
 b) Geographical
 c) Time-of-day restrictions
 d) Requisite presence of traffic or roadway characteristics
 e) Requisite absence of traffic or roadway characteristics
 f) Other ______________________________

4) What are the operational design limitations and constraints – the conditions under which the ADS of vehicle is not designed to control driving operations?
 a) Environmental
 b) Geographical
 c) Time-of-day restrictions
 d) Requisite presence of traffic or roadway characteristics
 e) Requisite absence of traffic or roadway characteristics
 f) Other ______________________________

5) What data on the functions above are recorded, retained, and/or reported?

6) Where is the recorded, retained, and/or reported data accessible?

7) How is the recorded, retained, and/or reported data accessible?

8) For what period is the recorded, retained, and/or reported data accessible?

9) Who is authorized to access the recorded, retained, and/or reported data?

B. HOW ARE THE VEHICLE’S ADS DRIVING OPERATION CONTROLS DESIGNED TO BE ENGAGED?

1) What driving operations are the vehicle’s ADS designed to control?
 a) Steering
 b) Braking
 c) Acceleration
 d) Other ______________________________

2) Are the ADS of the vehicle driving operations controls designed to be engaged automatically or by the occupant?
 a) Automatic Engagement
 b) Automatic Disengagement
 c) Human Engagement
 d) Human Disengagement

3) What actions are required in the vehicle design for the ADS driving operations controls designed to be engaged or disengaged?
 a) Automatic Engagement
 b) Automatic Disengagement
 c) Human Engagement
 d) Human Disengagement

4) What preconditions, if any, is the ADS designed to require for the vehicle driving operations for controls to be engaged or disengaged?
 a) Automatic Engagement
 b) Automatic Disengagement
 c) Human Engagement
 d) Human Disengagement

5) Is the system designed to notify occupants notified of the driving operations controls that are engaged and not engaged by the ADS of the vehicle?
 a) No
 b) Yes – How?
6) Is the system designed to notify occupants notified of the Operational Design Domains and limitations of the ADS of the vehicle?
 a) No
 b) Yes – How?

7) Is the system designed to notify occupants of the vehicle operation outside the Operational Design Domains?
 a) No
 b) Yes – How?

8) What data on the functions above are recorded, retained, and/or reported?

9) Where is the recorded, retained and/or reported data accessible?

10) How is the recorded, retained, and/or reported data accessible?

11) For what period is the recorded, retained, and/or reported data accessible?

12) Who is authorized to access the recorded, retained, and/or reported data?

C. HOW IS THE VEHICLE DESIGNED TO ALLOW OR REQUIRE OCCUPANT CONTROL?

1) What driving operations is the vehicle’s ADS designed to control?
 a) Steering
 b) Braking
 c) Acceleration
 d) Other_____________________________

2) When the vehicle ADS is controlling any driving operation, is the ADS designed to allow occupants to mutually control that same driving operations?

<table>
<thead>
<tr>
<th>ADS Control Is Engaged</th>
<th>Steering</th>
<th>Braking</th>
<th>Acceleration</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant Can Steer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupant Can Brake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupant Can Accelerate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) Which dynamic driving tasks of ADS driving operations controls are designed to be voluntarily disengaged by occupants?
 a) Steering
 b) Braking
 c) Acceleration
 d) Other_____________________________

4) Which dynamic driving tasks of ADS driving operations controls are designed to be disengaged by the ADS and required to be reengaged by occupants?
 a) Steering
 i) Conditions:
 b) Braking
 i) Conditions:
 c) Acceleration
 i) Conditions:
 d) Other_____________________________
 i) Conditions:

5) SAEJ3016 8.3 provides that level 4 or 5 vehicles may have “an emergency stop lever.” Does this vehicle have this feature or its equivalent?
 a) If so, under what conditions is the vehicle designed to allow the feature to be engaged?
 b) How is the vehicle designed for the occupant to be required, allowed, limited, or prohibited to engage the feature?

6) What data on the functions above are recorded, retained, and/or reported?

7) Where is the recorded, retained, and/or reported data accessible?

8) How is the recorded, retained, and/or reported data accessible?

9) For what period is the recorded, retained, and/or reported data accessible?

10) Who is authorized to access the recorded, retained, and/or reported data?
D. HOW IS VEHICLE DESIGNED TO ALLOW OR REQUIRE AN OCCUPANT TO TAKE CONTROL OF DRIVING OPERATIONS?

ALLOW

1) Is the vehicle designed to allow an occupant to voluntarily disengage all ADS driving control and assume manual control of driving operations?
 a) How is the vehicle designed to allow an occupant to voluntarily disengage all ADS driving control and assume manual control of driving operations?

2) Is the vehicle designed to allow an occupant to voluntarily disengage some but not all ADS driving control and assume manual control of driving operations?
 a) How is the vehicle designed to allow an occupant to voluntarily disengage some but not all ADS driving control and assume manual control of driving operations?

RESTRICT

3) Is the vehicle designed to restrict an occupant from voluntarily disengaging all ADS driving control and assuming manual control of driving operations?
 a) How is the vehicle designed to restrict an occupant from voluntarily disengaging all ADS driving control and assuming manual control of driving operations?

4) Is the vehicle designed to restrict an occupant from voluntarily disengaging some but not all ADS driving control and assuming manual control of driving operations?
 a) How is the vehicle designed to restrict an occupant from voluntarily disengaging some but not all ADS driving control and assuming manual control of driving operations?

PROHIBIT

5) Is the vehicle designed to prohibit an occupant from voluntarily disengaging all ADS driving control and assuming manual control of driving operations?
 a) How is the vehicle designed to prohibit an occupant from voluntarily disengaging all ADS driving control and assuming manual control of driving operations?

6) Is the vehicle designed to prohibit an occupant from voluntarily disengaging some but not all ADS driving control and assuming manual control of driving operations?
 a) How is the vehicle designed to prohibit an occupant from voluntarily disengaging some but not all ADS driving control and assuming manual control of driving operations?

7) Is the vehicle designed so that all vehicle driving operation controls taken back by the occupant are in compliance with the relevant FMVSS requirements?

E. WAS THE OCCUPANT REQUIRED OR NOTIFIED TO TAKE CONTROL OF ANY DRIVING OPERATIONS?

ALLOW

1) Is the vehicle designed to allow an occupant to voluntarily disengage all ADS driving control and assume manual control of driving operations?
 a) How is the vehicle designed to allow an occupant to voluntarily disengage all ADS driving control and assume manual control of driving operations?

2) Is the vehicle designed to allow an occupant to voluntarily disengage some but not all ADS driving control and assume manual control of driving operations?
 a) How is the vehicle designed to allow an occupant to voluntarily disengage some but not all ADS driving control and assume manual control of driving operations?

RESTRICT

3) Is the vehicle designed to restrict an occupant from voluntarily disengaging all ADS driving control and assuming manual control of driving operations?
 a) How is the vehicle designed to restrict an occupant from voluntarily disengaging all ADS driving control and assuming manual control of driving operations?

4) Is the vehicle designed to restrict an occupant from voluntarily disengaging some but not all ADS driving control and assuming manual control of driving operations?
 a) How is the vehicle designed to restrict an occupant from voluntarily disengaging some but not all ADS driving control and assuming manual control of driving operations?

PROHIBIT

5) Is the vehicle designed to prohibit an occupant from voluntarily disengaging all ADS driving control and assuming manual control of driving operations?
 a) How is the vehicle designed to prohibit an occupant from voluntarily disengaging all ADS driving control and assuming manual control of driving operations?

6) Is the vehicle designed to prohibit an occupant from voluntarily disengaging some but not all ADS driving control and assuming manual control of driving operations?
 a) How is the vehicle designed to prohibit an occupant from voluntarily disengaging some but not all ADS driving control and assuming manual control of driving operations?

7) Is the vehicle designed so that all vehicle driving operation controls taken back by the occupant are in compliance with the relevant FMVSS requirements?

8) Is the vehicle designed for an occupant who has taken control of driving operations to give vehicle driving operations control back to the ADS?
 a) How is the vehicle designed so that an occupant who has taken control of driving operations can give vehicle driving operations control back to the ADS?
 b) Is the vehicle designed to inform the occupant as to which controls of driving operations the ADS have and have not resumed?

9) Is the vehicle designed to enable the ADS to take vehicle driving operations control from an occupant without the occupants’ consent?
 a) How is the vehicle designed to enable the ADS to take vehicle driving operations control from an occupant without the occupants’ consent?

10) What data on the functions above are recorded, retained, and/or reported?
11) Where is the recorded, retained and/or reported data accessible?
12) How is the recorded, retained, and/or reported data accessible?
13) For what period is the recorded, retained, and/or reported data accessible?
14) Who is authorized to access the recorded, retained, and/or reported data?

E. WAS THE OCCUPANT REQUIRED OR NOTIFIED TO TAKE CONTROL OF ANY DRIVING OPERATIONS?

1) Is the vehicle designed to disengage all ADS driving control and require an occupant to assume manual control of driving operations?
 a) How is the vehicle designed to disengage all ADS driving control and require an occupant to assume manual control of driving operations?

2) Is the vehicle designed to disengage some but not all ADS driving control and require an occupant to assume manual control of driving operations?
 a) How is the vehicle designed to disengage some but not all ADS driving control and require an occupant to assume manual control of driving operations?

3) Is the vehicle designed to inform the occupant of the driving operations for which the occupant has taken or been required to take control?
 a) How is the vehicle designed to inform the occupant of the driving operations for which the occupant has taken or been required to take control?
4) Is the vehicle designed to verify that the occupant required to assume manual control of driving operations has any specific knowledge, ability, and/or acceptance of that driving operation control responsibility?
 a) How is the vehicle designed to verify that the occupant required to assume manual control of driving operations has any specific knowledge, ability, and/or acceptance of that driving operation control responsibility?

5) If there are multiple occupants in the vehicle, is the vehicle designed to verify that any or all of the occupants have the knowledge, ability, and acceptance of driving operation control responsibility?
 a) How is the vehicle designed to verify that any or all of the occupants have the knowledge, ability, and acceptance of driving operation control responsibility?
 b) Is the vehicle designed to continue to operate under the ADS without verified knowledge, ability, and acceptance of any occupant driving operation control responsibility?

6) Is the vehicle designed to provide any information or instructions to occupants of driving operation control for which an occupant may be responsible?
 a) How are these instructions provided?
 b) How do occupants verify knowledge and/or ability for acceptance of driving operation control responsibility?
 c) How do occupants accept driving operation control responsibility?

7) What data on the functions above are recorded, retained, and/or reported?

8) Where is the recorded, retained, and/or reported data accessible?

9) How is the recorded, retained, and/or reported data accessible?

10) For what period is the recorded, retained, and/or reported data accessible?

11) Who is authorized to access the recorded, retained, and/or reported data?

F. WAS THE OCCUPANT MADE AWARE OF ALL OPERATIONAL DOMAINS AND CONSTRAINTS?

1) Is the vehicle designed to inform occupants of any and all occupant responsibilities?
 a) How is the vehicle designed to inform occupants of any and all occupant responsibilities?

2) Is the vehicle designed to inform occupants as to what the ADS can do and what the ADS will not do, and under what conditions and limitations?
 a) How is the vehicle designed to informed occupants of the ADS operational domains and constraints?

3) Is the vehicle designed to inform occupants of any notifications or warnings that the occupants may be given during driving operations and what the notifications mean?
 a) How is the vehicle designed to inform occupants of any notifications or warnings that the occupants may be given during driving operations and what the notifications mean?

4) Is the vehicle designed to require occupants to verify that they understand and accept the ADS the information in 1), 2), and 3) prior to use of the vehicle?
 a) How is the vehicle designed to require occupants to verify that they understand and accept the ADS the information in 1), 2), and 3) prior to use of the vehicle?

5) What data on the functions above are recorded, retained, and/or reported?

6) Where is the recorded, retained, and/or reported data accessible?

7) How is the recorded, retained, and/or reported data accessible?

8) For what period is the recorded, retained, and/or reported data accessible?

9) Who is authorized to access the recorded, retained, and/or reported data?

G. HOW AND WHEN CAN THE OCCUPANT TAKE CONTROL?

1) Voluntary Occupant Assumption of Control
 a) Which controls of driving operations is the vehicle designed to allow the occupant to voluntarily engage or disengage from the ADS during driving operations?
 b) Which controls of driving operations is the vehicle designed to not allow the occupant to voluntarily engage or disengage from the ADS during driving operations?
 c) What preconditions, if any, is the vehicle designed to require for driving operations controls to be voluntarily engaged or disengaged by an occupant?
 d) Are there conditions in which the vehicle is designed to not allow the occupant to voluntarily assume control of driving operations?
 e) What actions is the vehicle designed to require from an occupant for driving operation controls to be engaged or disengaged by an occupant?
 f) How much time is required by the vehicle to allow the occupant to voluntarily assume control of driving operations?
2) Vehicle Requires Occupant Assumption of Control
 a) Under what conditions is the vehicle designed to require an occupant to assume any control of driving operation controls?
 b) If the ADS require an occupant to assume control, how is the vehicle designed to notify an occupant of which driving operations controls to take over?
 c) How much time, after the occupant is alerted by the ADS for the occupant to assume control, is the vehicle designed to require the occupant to assume control of driving operations?
 d) How is the vehicle designed to determine/verify whether the occupant has assumed control of the driving operation?
 e) What is the vehicle designed to do if the occupant does not assume control of the driving operation?

3) What data on the functions above are recorded, retained, and/or reported?

4) Where is the recorded, retained, and/or reported data accessible?

5) How is the recorded, retained, and/or reported data accessible?

6) For what period is the recorded, retained, and/or reported data accessible?

7) Who is authorized to access the recorded, retained, and/or reported data?

H. DID THE CONTROL THAT THE OPERATOR ASSUMED – OR SHOULD HAVE ASSUMED – (STEERING, BRAKING, ACCELERATION) CAUSE OR CONTRIBUTE TO THE CRASH?

Immediately prior to the crash and at the time of the crash, insurers and law enforcement will want to know the following:

1) Which driving operation controls to be controlled exclusively by the ADS is the vehicle designed to record?

2) Which driving operation controls to be controlled by a human driver exclusively is the vehicle designed to record?

3) Is the vehicle designed to record when the human operator retained all driving operations from the beginning of the operation of the vehicle?

4) Is the vehicle designed to record when the ADS retained all driving operations from the beginning of the operation of the vehicle?

5) Is the vehicle designed to record when a human operator turned any or all driving operation control over to the ADS?